短 報

A群レンサ球菌食中毒事例由来の
分離株に関する検討

鈴木理恵子*，新川隆康

A Food-borne epidemic of Group
A Streptococcal Pharyngitis

Rieko SUZUKI and Takayasu NIKKAWA

はじめに

A群溶血レンサ球菌感染症は，Streptococcus pyogenesを原因菌とした呼吸器感染症で，S. pyogenes
はA群レンサ球菌と呼ばれている。本菌感染症は通常，
小学生頃までに感染することが多く，咽喉頭，発熱等の
風邪様症状を呈し，続発症として急性系球体腎炎やリウ
マチ風等の重症な疾患を引き起こすことがある。またA
群レンサ球菌は，健康的人の咽喉頭，皮膚などにも存在す
る一種であるが，その伝播経路は主に飛沫感染で
感染源は急性期や回復期の患者の鼻腔，咽喉頭，または化
膿性疾患の分泌物である。A群レンサ球菌が関与する
感染症には，呼吸器感染症だけではなく手足の筋膜・筋
肉等の軟部組織に壞死性の炎症を伴い重篤な症状を呈す
カリエスレンサ球菌感染症（TSLS）もある。

近年，食品を介して起こる感染症は大きな社会的問題
となっているが，2005年7月，神奈川県内で生戸網で発生した
事例が発生した。著者らは今回の事例に関する食品およ
び環境条件からの原因菌の分離，同定を実施すると共に，
事例由来株について細菌学的検査，遺伝子検索およびバ
ルスフィールドゲル電気泳動による分子疫学的解析を行っ
たので報告する。

材料および方法

県立大学医学部平成17年7月30日，31日の2日間において
行われた催し物で，手伝いの学生および職員に配布さ
れた枝豆の仕出し弁当を喫食した約489名のうち218名が
咽喉痛，発熱等の症状を呈しており，患者よりA群レン
サ球菌が検出したと病院より保健所に連絡があり，原
因究明のため当所へA群レンサ球菌の検査依頼があった。

1. 検査材料

弁当提供施設の食中毒16検体（30日7検体，31日9検体），
31日弁当残品（未開封）5検体（1箱を分割）および施
設ふき取り5検体（計26検体）について，A群レンサ球
菌の分離培養同定検査を行った。

患者および弁当製造従事者の咽頭ぬぐい液は，医療施
設にてA群レンサ球菌の分離が行われ，送付された菌株
11検体（患者8検体，調理従事者3検体）について，血清
型別等の同定検査を行った。

2. A群レンサ球菌の分離および血清型別

分離培養に供した検体，弁当残品および試き取り検体
は，検体量に応じて5gから10gを秤量し，等量の滅菌リン
酸緩衝液で乳剤を作製した。乳剤の一白金耳量を直接，
5％ウマ血液血コロニーCNA寒天培地（BD）に接種し
，37℃18〜24時間分離培養を行った（直接培養）。ま
た，増菌培養として乳剤1mlをオート培地（日本）10mlに
接種し37℃18〜24時間培養後，培養液の一白金耳量を直
接培養と同様に分離培養を行った，分離後の寒天培地上
に得られたβ溶血を示す集落をA群レンサ球菌と推察し，
スライドテストアグロキシトにより群別を行い，
A群に凝集することを確認した。

A群レンサ球菌と同定された食中毒株および医療機
関より送付されたヒト由来株について，市販のA群レン
サ球菌免疫血清（生研）を用いT型別を実施した。

3. 発赤毒素遺伝子の検索

菌株の細胞を精製水100μlに懸濁し，100℃10分加熱
後急冷したものをDNA精製し，発赤毒素specA，
specB，specC遺伝子の検索を行った。

4. バルスフィールドゲル電気泳動

バルスフィールド電気泳動（PFGE）は菌株を精
製水200μlに懸濁し，等量の1%Seakem Gold Agarose
（Cambio）を加え菌体包埋ブランクを作製した。作製した
ブランクは1mg/ml Lysostaphin，1mg/ml Lysozyme，
0.5M EDTA（pH8.0）溶液で溶菌後，1mg/ml Proteinase K，1%N-lauroylsarcosine
添加50M EDTA
（pH8.0）溶液で処理し，制限酵素Smal Iを用いDNAを
切断後，バルスフィールド電気泳動（以下，PFGE）
を行った。また，制限酵素Sfi Iを用い，同様にPFGE
パターンの比較を行った。

結 果

31日の検体3検体（焼飯，春巻き・とうもろこし，冷
やししきりん），弁当残品4検体（お茶，炒飯，春巻き・
とうもろこし，唐揚，かに玉・ポテト）からA群レン
球菌が分離された。
これを取り分離した食品由来7株および送付されたヒト由来4株（計18株）について血清型別を行ったところ、食品由来7株はいずれもT25型であった。ヒト由来11株のうち患者由来6株および調理従事者由来5株はT25型で食品由来株と同様であったが、調理従事者由来1株はA群レンサ球菌T型別不検出株であった（表１、表２）。
食品またはヒト由来株、計18株はいずれも発赤毒素speB遺伝子単独保有株であった。
またこれら18株について制限酵素SmaⅠおよびSfiⅠを用いたレベルスフィールドゲル電気泳動（PFGE）を行ったところ、各々のPFGEパターンはT25型17株および型別不検出1株の全て同一であった。

表１ 食品および環境からのA群レンサ球菌分離状況

<table>
<thead>
<tr>
<th>No</th>
<th>株型名</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30日井栄検査（海老ステーキ）</td>
<td>検出せず</td>
</tr>
<tr>
<td>2</td>
<td>30日井栄検査（たこご飯）</td>
<td>検出せず</td>
</tr>
<tr>
<td>3</td>
<td>30日井栄検査（下煮）</td>
<td>検出せず</td>
</tr>
<tr>
<td>4</td>
<td>30日井栄検査（ささげた）</td>
<td>検出せず</td>
</tr>
<tr>
<td>5</td>
<td>30日井栄検査（扇で蒸し飯）</td>
<td>検出せず</td>
</tr>
<tr>
<td>6</td>
<td>30日井栄検査（マイチ）</td>
<td>検出せず</td>
</tr>
<tr>
<td>7</td>
<td>30日井栄検査（柿の種）</td>
<td>検出せず</td>
</tr>
<tr>
<td>8</td>
<td>31日井栄検査（卵焼き）</td>
<td>検出せず</td>
</tr>
<tr>
<td>9</td>
<td>31日井栄検査（卵）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>10</td>
<td>31日井栄検査（春巻き・とうもろこし）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>11</td>
<td>31日井栄検査（たけのこ・ポテト）</td>
<td>検出せず</td>
</tr>
<tr>
<td>12</td>
<td>31日井栄検査（たけのこ）</td>
<td>検出せず</td>
</tr>
<tr>
<td>13</td>
<td>31日井栄検査（材料）</td>
<td>検出せず</td>
</tr>
<tr>
<td>14</td>
<td>31日井検査（冷やししめし・のり）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>15</td>
<td>31日井検査（たけのこ）</td>
<td>検出せず</td>
</tr>
<tr>
<td>16</td>
<td>31日検査（冷やししめし・のり）</td>
<td>検出せず</td>
</tr>
<tr>
<td>17</td>
<td>31日検査（たけのこ）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>18</td>
<td>31日検査（材料）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>19</td>
<td>31日検査（春巻き・とうもろこし・唐揚げ）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>20</td>
<td>31日検査（たけのこ）</td>
<td>検出せず</td>
</tr>
<tr>
<td>21</td>
<td>31日検査（たけのこ・ポテト）</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>22</td>
<td>調理従事者検査（①）</td>
<td>検出せず</td>
</tr>
<tr>
<td>23</td>
<td>調理従事者検査（②）</td>
<td>検出せず</td>
</tr>
<tr>
<td>24</td>
<td>調理従事者検査（③）</td>
<td>検出せず</td>
</tr>
<tr>
<td>25</td>
<td>調理従事者検査（④）</td>
<td>検出せず</td>
</tr>
<tr>
<td>26</td>
<td>調理従事者検査（⑤）</td>
<td>検出せず</td>
</tr>
</tbody>
</table>

表２ 患者および調理従事者由来のA群レンサ球菌型別結果

<table>
<thead>
<tr>
<th>検体名</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者由来検査1</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査2</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査3</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査4</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査5</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査6</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査7</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>患者由来検査8</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>調理従事者検査1</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
<tr>
<td>調理従事者検査2</td>
<td>A群レンサ球菌T型別不検出</td>
</tr>
<tr>
<td>調理従事者検査3</td>
<td>A群レンサ球菌T25 speB</td>
</tr>
</tbody>
</table>

注）PFGEパターンは全株ともに同一

考 覧
今回の事例では、3日の検査および弁当残品7株、患者8株、調理従事者1株からA群レンサ球菌T25型を発赤毒素speB遺伝子単独保有株が出され、PFGEパターンも一致していた。疫学調査では患者は3日に配布された昼食の仕込み弁当を食べており、3日の仕込み弁当を原因とする大規模な集団感染事例であると判明した。調理従事者1名から検出された血清型別不検出株についてもPFGEパターンの一致が確認されたが、T型別は菌体表面のタンパクについて型別を行うため、菌株の当該タンパク保有状況によっては型別が不能となる場合がある。
今回、型別不検出株とT25型は免疫学的手法である血清型検査では異ったがPFGEパターンでは類似または同一由来株であると推察された。しかし、A群レンサ球菌がPFGEパターンのバリエーションが比較的少ない菌種であるため今後ともデータを蓄積していくことが必要である。
A群レンサ球菌感染症は、海産物において多数報告されているが、我が国での集団感染事例および食中毒事例は、本事例を含む2005年昭和91年3月に報告されているにすぎない。A群レンサ球菌による集団感染症において、食品、患者および調理従事者から血清型、発赤毒素型およびPFGEパターンの一貫が確認できた事例は1998年の茨城の事例に続き、本事例が2例目である。
食物を摂取することによって起こる食品媒介感染症は、いわゆる食中毒呼ばれ、急性胃腸炎などの消化器症状を主訴とするが、今回のような、胃腸炎以外の症状を呈する食中毒があることが再認識された。食品を介してA群レンサ球菌に感染した場合の臨床症状は、通常のA群溶血レンサ球菌感染症とは明らかに異なるが咽頭痛、発熱、関節痛等である。消化器症状より呼吸器症状が顕著であることを知る研究班から報告している。本感染症は、小規模集団事例においては単なる風俗として見過ごされてしまう可能性も欠かされ、本感染症による集団発生報告が少ない要因であると推察される。
A群溶血レンサ球菌感染症は、飛沫感染を含め含む食品によっても媒介される感染症であることを認識し、集団風邪様症状の発生があった場合には、本菌食中毒も考慮し原因究明にあたり必要がある。
最後に、本事例解明のために検体管理や情報提供いただきました相模原市保健所および衛生試験所の方々に深く感謝いたします。（平成18年7月20日受理)

文献
1）岸村雅雄、山崎伸二、竹田美文：A群溶血菌の産生する発赤毒素遺伝子のPCRによる型別判定：日本臨床,50,326-336(1992)